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Supplementary Methods 1 

 2 

Description of the TrustGauss functions 3 

The main function of the “TrustGauss” package is TrustGauss() and it can take 29 arguments that are 4 

described in the documentation to the function and that can be accessed via 5 

 6 

> ?TrustGauss 7 

 8 

TrustGauss() can be used to assess type I error rates of linear regression models that are fitted through 9 

a call to the base R function glm(). We here briefly summarize each of the 29 arguments. Default 10 

settings for each argument are given in the documentation to the function. 11 

 12 

1. Family. This argument takes a character input and specifies the error distribution and link 13 

function to be used in the generalized linear model. It can take one of the following values: 14 

“gaussian”, “poisson”, “binomial”, “quasipoisson”, “quasibinomial” or “Gamma”. Since the 15 

argument is passed directly to the glm() function, the link function can be specified in the standard 16 

way, for example as “gaussian(link = ‘identity’)”. See also the glm() function for further details. 17 

2. nSamples. This argument takes a numeric integer input, specifying the number of samples/data 18 

points to simulate. 19 

3. nSimulations. This argument takes a numeric integer input, specifying for how many iterations 20 

the simulation will run. 21 

4. SaveAllOutput. This argument is Boolean. If it is set to TRUE, all individual data points of the 22 

dependent and independent variables are returned in a list. They can be found in “Data” with 23 

column names “Dependent”, “Cov1”, “Cov2”, ..., “Fac1”, “Fac2”, ... (depending on what 24 

combination of covariates and factors is specified, see below). 25 

5. CompareTtest. This argument is Boolean. If it is set to TRUE, P-values are calculated through 26 

both the glm() and the t.test() function. This is only valid when a single factor with two levels is 27 

fitted as the independent variable with distribution set to “UniformCategorical” (see below). 28 

6. PlotExample. This parameter is Boolean. If it is set to TRUE, one example histogram of the 29 

distribution of the dependent variable Y is plotted. 30 

7. DistributionY. This argument takes a character input and specifies the distribution of the 31 

dependent variable Y. It can take one of the following values: “Gaussian”, “GaussianCategorical”, 32 

“GaussianZero”, “AbsoluteGaussian”, “Gamma”, “GammaCategorical”, 33 

“GaussianZeroCategorical”, “Binomial”, “NegativeBinomial”, “StudentsT”, “Poisson” or 34 

“Uniform”. In principle, the base R functions for generating randomly distributed Gaussian 35 

[rnorm()], Gamma [rgamma()], binomial [rbinom()], negative binomial [rnbinom()], Student’s t 36 

[rt()], Poisson [rpois()] or uniform [runif()] variables are used. Parameters for all distributions can 37 

be specified (see below). “GaussianCategorical” generates normally distributed integers. 38 

“GaussianZero” generates a zero-inflated normal distribution. “AbsoluteGaussian” simulates 39 

absolute values of a Gaussian distribution. “GaussianZeroCategorical” first generates a zero-40 

inflated normal distribution and then produces categories. “GammaCategorical” generates gamma 41 

distributed integers. 42 

8. DistributionXCov. This argument takes a character input and specifies the distribution of the 43 

independent covariate X. It can take the same values as DistributionY. It is also possible to specify 44 

multiple different distributions in order to fit more than one covariate (as a vector). Additionally, it 45 

can be set to NULL if only factors should be fitted. 46 
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9. DistributionXFac. This argument takes a character input and specifies the distribution of the 47 

independent factor X. Only the categorical distributions are valid inputs (“GaussianCategorical”, 48 

“GammaCategorical”, “GaussianZeroCategorical”, “Binomial” or “UniformCategorical”). It is 49 

also possible to specify multiple different distributions in order to fit more than one factor (as a 50 

vector). Additionally, it can be set to NULL if only covariates should be fitted. 51 

 52 

The following arguments specify parameters for the distributions of the independent and dependent 53 

variables. 54 

 55 

10. MeanY.gauss. This argument takes a numeric input, specifying the mean of the distribution of 56 

Y, if DistributionY is set to “Gaussian”, “GaussianCategorical”, “GaussianZero”, 57 

“GaussianZeroCategorical” or “AbsoluteGaussian”. See also the rnorm() function for further 58 

details. The operations of categorization, taking the absolute value or adding zero-inflation are 59 

performed after the call to the rnorm() function. 60 

11. SDY.gauss. This argument takes a numeric input, specifying the standard deviation of the 61 

distribution of Y, if DistributionY is set to “Gaussian”, “GaussianCategorical”, “GaussianZero”, 62 

“GaussianZeroCategorical” or “AbsoluteGaussian”. See also the rnorm() function for further 63 

details. The operations of categorization, taking the absolute value or adding zero-inflation are 64 

performed after the call to the rnorm() function. 65 

12. nCategoriesY.cat. This argument takes a numeric integer input, specifying how many 66 

categories are simulated, if DistributionY is set to “GaussianCategorical” or “GammaCategorical”. 67 

13. zeroLevelY.zero. This argument takes a numeric input, specifying the proportion of data that 68 

will be set to 0, if DistributionY is set to “GaussianZero” or “GaussianZeroCategorical”. 69 

14. ShapeY.gamma. This argument takes a numeric input, specifying the shape parameter k, if 70 

DistributionY is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also the 71 

rgamma() and rnbinom() functions for further details. Categorization is performed after the call to 72 

the rgamma() function. 73 

15. ScaleY.gamma. This argument takes a numeric input, specifying the scale parameter capital 74 

theta, if DistributionY is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also 75 

the rgamma() and rnbinom() functions for further details. Categorization is performed after the call 76 

to the rgamma() function. 77 

16. DFY.student. This argument takes a numeric input, specifying the degrees of freedom, if 78 

DistributionY is set to “StudentsT”. See also the rt() function for further details. 79 

17. MinY.uni. This argument takes a numeric input, specifying the minimum of the distribution, if 80 

DistributionY is set to “Uniform”. See also the runif() function for further details. 81 

18. MaxY.uni. This argument takes a numeric input, specifying the maximum of the distribution, if 82 

DistributionY is set to “Uniform”. See also the runif() function for further details. 83 

19. LambdaY.pois. This argument takes a numeric input, specifying the mean of the distribution, if 84 

DistributionY is set to “Poisson”. See also the rpois() function for further details. 85 

20. MeanX.gauss. This argument takes a numeric input, specifying the mean of the distribution of 86 

the independent variable X, if DistributionX is set to “Gaussian”, “GaussianCategorical”, 87 

“GaussianZero”, “GaussianZeroCategorical” or “AbsoluteGaussian”. See also the rnorm() function 88 

for further details. See also the rnorm() function for further details. The operations of 89 

categorization, taking the absolute value or adding zero-inflation are performed after the call to the 90 

rnorm() function. 91 

21. SDX.gauss. This argument takes a numeric input, specifying the standard deviation of the 92 

distribution of the independent variable X, if DistributionX is set to “Gaussian”, 93 
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“GaussianCategorical”, “GaussianZero”, “GaussianZeroCategorical” or “AbsoluteGaussian”. See 94 

also the rnorm() function for further details. See also the rnorm() function for further details. The 95 

operations of categorization, taking the absolute value or adding zero-inflation are performed after 96 

the call to the rnorm() function. 97 

22. nCategoriesX.cat. This argument takes a numeric integer input, specifying how many 98 

categories are simulated, if DistributionX is set to “GaussianCategorical” or “GammaCategorical”. 99 

23. zeroLevelX.zero. This argument takes a numeric input, specifying the proportion of data that 100 

will be set to 0, if DistributionX is set to “GaussianZero” or “GaussianZeroCategorical”. 101 

24. ShapeX.gamma. This argument takes a numeric input, specifying the shape parameter k, if 102 

DistributionX is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also the 103 

rgamma() and rnbinom() functions for further details. Categorization is performed after the call to 104 

the rgamma() function. 105 

25. ScaleX.gamma. This argument takes a numeric input, specifying the scale parameter capital 106 

theta, if DistributionX is set to “Gamma”, “GammaCategorical” or “NegativeBinomial”. See also 107 

the rgamma() and rnbinom() functions for further details. Categorization is performed after the call 108 

to the rgamma() function. 109 

26. DFX.student. This argument takes a numeric input, specifying the degrees of freedom, if 110 

DistributionX is set to “StudentsT”. See also the rt() function for further details. 111 

27. MinX.uni. This argument takes a numeric input, specifying the minimum of the distribution, if 112 

DistributionX is set to “Uniform”. See also the runif() function for further details. 113 

28. MaxX.uni. This argument takes a numeric input, specifying the maximum of the distribution, if 114 

DistributionX is set to “Uniform”. See also the runif() function for further details. 115 

29. LambdaX.pois. This argument takes a numeric input, specifying the mean of the distribution, if 116 

DistributionX is set to “Poisson”. See also the rpois() function for further details. 117 

 118 

The function TrustGaussTypeII() can be used for the analysis of type II error rates as described in the 119 

main text. It adds a predefined effect to a single covariate only. All arguments can be accessed via 120 

 121 

> ?TrustGaussTypeII 122 

 123 

The function takes all the above 29 arguments of the TrustGauss() function and two additional ones. 124 

 125 

30. EffectXCov. This argument takes a numeric input, specifying the effect size that should be 126 

simulated. 127 

31. ZTransform. This argument is Boolean. If it is set to TRUE, the distributions of the dependent 128 

variable Y and the independent variable X are Z-transformed prior to adding the effect specified via 129 

EffectXCov. 130 

 131 

The function TrustGaussLMM() can be used to fit linear mixed-effects models and to assess type I 132 

error rates. It takes the above 29 arguments of the TrustGauss() function. Furthermore, a single 133 

random effect can be specified via 134 

 135 

32. RanEF. This argument is Boolean. If it is set to TRUE, a single random effect is fitted. 136 

33. nRanEFLevels. This argument takes a numeric integer input, specifying how many repeated 137 

measures for each sampling points are generated. 138 
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34. RanEFVarExp. This argument takes a numeric input, specifying the amount of variance 139 

explained by the random effect. This amount is only correct if the variables are normally 140 

distributed. 141 

 142 

The three functions in TrustGauss return a list with at least five elements 143 

 144 

1. A data frame Pvals with all P-values of covariates and factors. It has as many rows as simulation 145 

runs (nSimulations) and as many columns as fitted covariates and factors. Each row represents the 146 

P-values of a single iteration. Column names are of the form “PCov1”, “PCov2”, …, “PFac1”, 147 

“PFac2”, … (depending on what combination of covariates and factors is specified). If 148 

CompareTtest was set to TRUE, a two column data frame is returned with columns “PFac1” and 149 

“PTtest”. The second column represents the P-values of a t-test. 150 

2. A data frame ResCCC. It has as many rows as simulation runs (nSimulations) and six columns. 151 

Each row represents the following estimates of a single iteration: Column “PSWY” contains all P-152 

values of a Shapiro-Wilk test for normality of the dependent variable Y, column “PSWRes” 153 

contains all P-values of a Shapiro-Wilk test for normality of the residuals, column “rho” contains 154 

the concordance correlation coefficient (Lin 1989) between observed and expected residuals 155 

assuming normality for each model. We use the qqnorm() function to generate the expected values. 156 

Columns “s.shift”, “l.shift” and “C.b” contain the scale shift, the location shift and the bias 157 

correction factor of the concordance correlation (Lin 1989). We use the CCC() function of the 158 

DescTools R package (v0.99.25; Signorell & mult. al. 2018) for estimating these parameters. 159 

3. A vector Alphas.05 that contains the type I error rate at an α-level of 0.05 for each of the fitted 160 

covariates and factors summarized across all simulation runs. 161 

4. A vector Alphas.001 that contains the type I error rate at an α-level of 0.001 for each of the 162 

fitted covariates and factors summarized across all simulation runs. 163 

5. A data frame ShapiroWilk, which is a summary of the data frame ResCCC with one row and 164 

six columns. Column “Mean.PSWR” contains the mean P-value of the Shapiro-Wilk tests for 165 

normality of the residuals, calculated as 166 

 167 

10mean(log10(ResCCC$PSWRes)) 168 

 169 

Columns “QL.PSWR” and “QU.PSWR” provide the lower and upper 95% quantiles of the P-170 

values of the Shapiro-Wilk tests for normality of the residuals. Column “Mean.PSWY” contains 171 

the mean P-value of the Shapiro-Wilk tests for normality of the dependent variable Y, calculated as 172 

 173 

10mean(log10(ResCCC$PSWY)) 174 

 175 

Columns “QL.PSWY” and “QU.PSWY” provide the lower and upper 95% quantiles of the P-176 

values of the Shapiro-Wilk tests for normality of the dependent variable. 177 

 178 

6. If the argument SaveAllOutput is set to TRUE, a list Data that contains as many data frames as 179 

there are dependent and independent variables fitted. The data frames are named “Dependent”, 180 

“Cov1”, “Cov2”, … “Fac1”, “Fac2”, … (depending on what combination of covariates and factors 181 

is specified). In each of these data frames the values of Y (Dependent) and X (all the other data 182 

frames) are stored. Each of these data frames has as many rows as simulation runs (nSimulations) 183 

and as many columns as the specified sample size (nSamples). Each row represents the data values 184 

of a single iteration. 185 
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 186 

The function TrustGaussTypeII() returns one more element 187 

 188 

7. A data frame Effects with the parameter estimates of the covariate with an added effect. It has as 189 

many rows as simulation runs (nSimulations) and three columns. Each row represents the 190 

parameter estimates of a single iteration. Column “Intercept” contains the estimate of the intercept, 191 

column “Estimate” contains the slope estimate and column “SE” the standard error of the slope 192 

estimate. 193 

 194 

The function TrustGaussLMM() returns the same list as the TrustGauss() function with one additional 195 

element 196 

 197 

8. A vector VarExp that contains the proportion of variance explained by the single random effect 198 

fitted in the mixed-effects model. Each element of the vector corresponds to a single iteration. 199 

Thus, it has as many elements as simulation runs (nSimulations). 200 

 201 

Description of the data generating functions 202 

All of the above three functions in the TrustGauss package generate data for the dependent variable Y 203 

and the independent variable X through calls to the base R functions rnorm(), rgamma(), rbinom(), 204 

rnbinom(), rt(), rpois(), runif() and sample(). These functions draw random values with specified 205 

parameter arguments from a Gaussian, Gamma, binomial, negative binomial, Student’s t, Poisson, 206 

uniform (floating numbers) or uniform (integers) distribution, respectively. The distributions 207 

“GaussianCategorical”, “GaussianZero”, “GaussianZeroCategorical”, “AbsoluteGaussian” and 208 

“GammaCategorical” make use of additional functions to generate categories, to take absolute values 209 

or to introduce zero-inflation after a call to rnorm() or rgamma(), thereby changing the specified mean 210 

and standard deviation or shape and scale. Table 1 lists the specific parameter settings for the ten 211 

distributions simulated in the main text (D0–D9). Figures 1A and S2A display histograms of the 212 

distributions D0–D9. 213 

 214 

A typical call to TrustGauss() 215 

Assume we want to run a simulation with 100 observations in each of 50,000 iterations. We specify 216 

the Family argument as “Gaussian” to fit a linear model with identity link. See the glm() 217 

documentation for details on the Family arguments. This is equivalent to fitting a linear model 218 

assuming normally distributed errors. Since we might also be interested in the individual observations 219 

of each simulation run, we specify SaveAllOutput=TRUE. This will save the 100 × 50,000 = 220 

5,000,000 data points of the dependent variable Y and the 5,000,000 observations of the predictor X. 221 

We want the dependent variable Y to be distributed as the absolute values of a Gaussian distribution 222 

with mean 0 and standard deviation 1. The independent variable X should be a single covariate that is 223 

Gamma distributed with shape 1.5 and scale 10. Thus, our call to TrustGauss() looks like this 224 

 225 

> sim <- TrustGauss(Family="gaussian", nSamples=100, 226 

nSimulations=50000, SaveAllOutput=TRUE, 227 

DistributionY="AbsoluteGaussian", DistributionXCov="Gamma", 228 

DistributionXFac=NULL, MeanY.gauss=0, SDY.gauss=1, 229 

ShapeX.gamma=1.5, ScaleX.gamma=10) 230 

 231 

A progress bar is going to indicate the progress of the simulation, which is updated after every 232 

iteration. As soon as the simulation has finished, we can access every element of the resulting list. For 233 
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example, if we want to obtain the data frame of individual P-values for every iteration in this call to 234 

TrustGauss(), we can access it via 235 

 236 

> sim$Pval 237 

 238 

A summary of the type I error rate at an α-level of 0.05 is accessible through 239 

 240 

> sim$Alphas.05 241 

 242 

In this call to TrustGauss() with a single covariate, this will yield only a single value for the 243 

independent variable X. If we had multiple covariates or factors specified, a separate type I error rate 244 

for each of them would have been displayed. 245 

 246 

Description of the basic simulations 247 

After specifying the input arguments for the TrustGauss()function (see above), the simulation starts 248 

by generating uncorrelated data for the dependent variable Y and the independent variable X according 249 

to the input parameters. Following our above example, specifying a sample size of nSamples = 100 250 

and the distribution of Y as DistributionY = “AbsoluteGaussian” with MeanY.gauss = 0 and 251 

SDY.gauss = 1, the function generates data for Y as 252 

 253 

> y <- abs(rnorm(n=100, mean=0, sd=1)) 254 

 255 

Similarly, for the independent variable X we specify DistributionX = “Gamma” with ShapeX.gamma 256 

= 1.5 and ScaleX.gamma = 10. Then, the function generates data for X as 257 

 258 

> x <- rgamma(n=100, shape=1.5, scale=10) 259 

 260 

After the data generating step, two linear models are fitted using the Family argument (argument 1) 261 

from above 262 

 263 

> mod1 <- glm(y ~ x, family=Family) 264 

> mod2 <- glm(y ~ 1, family=Family) 265 

 266 

The models are compared via 267 

 268 

> anova(mod1, mod2) 269 

 270 

We keep the P-value of this model comparison and start the next iteration by generating data for Y 271 

and X again. The number of iterations was set to nSimulations = 50,000 in all our simulations. We 272 

further set Family = “gaussian”, with the exception of models with a Poisson error structure that are 273 

highlighted as such in the main text. 274 

 275 

Because the data for Y and X are uncorrelated, we expect 5% of all models to yield a P-value ≤ 0.05. 276 

If more than 5% of all models have a P-value ≤ 0.05, then the type I error rate is inflated (i.e. too 277 

many models yield “significant” results), whereas if less models have a P-value ≤ 0.05, then they are 278 

conservative, yielding too few “significant” results. In Figure 1, combinations of Y and X that produce 279 

inflated type I error rates are coloured red and those yielding conservative P-values are coloured blue. 280 

 281 
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Introduction of heteroscedasticity 282 

First, we sampled the independent variable X from a binomial distribution, where we varied the 283 

success rate from 0.2 to 0.8 in steps of 0.1. Whenever the independent variable X was equal to 0, we 284 

sampled the dependent variable Y either from distribution D0 or D7 (see Table 1). We also introduced 285 

a third distribution D7.1, which was negative binomial with mean 0.5 and a variance of 1 (with the 286 

rational of introducing the same absolute difference in variance as in D0). Whenever the independent 287 

variable X was equal to 1, we sampled the dependent variable from the same distribution but with a 288 

10-times larger variance. We assessed the effects of heteroscedasticity with sample sizes of N = 100 289 

and N = 1000. We then fitted a glm either with a Gaussian or a Quasipoisson error structure, where we 290 

tested the significance of the independent variable X via a likelihood ratio test. We fitted these models 291 

to 50,000 datasets for each combination of the dependent and predictor variable with two sample sizes 292 

(i.e. 3 distribution of the dependent variable × 7 distributions of the independent variable × 2 sample 293 

sizes = 42 combinations, each with a Gaussian or a Quasipoisson error structure). 294 

 295 

Second, we introduced a second independent variable X that we sampled from a uniform distribution 296 

with five levels. The other predictor and the dependent variable Y were sampled as described above 297 

with sample sizes of N = 100 and N = 1000. We then fitted a glm either with a Gaussian or a 298 

Quasipoisson error structure, where we tested the significance of the interaction between the two 299 

independent variables via a likelihood ratio test. We fitted these models to 50,000 datasets for each 300 

combination of the dependent and predictor variables with two sample sizes as well. 301 

 302 

For each simulation run, we recorded the variance in the two groups (as defined by the predictor 303 

variable with two levels, see above). We summarized the 50,000 simulation runs by calculating (1) 304 

the type I error rate as the number of simulations with a P-value ≤ 0.05 / the number of all simulation 305 

runs (i.e. 50,000) and (2) the mean observed difference in variances between the two groups (see 306 

Table S5).307 
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Supplementary Figures 308 

 309 

Figure S1 | All simulated combinations of the dependent variable Y and the predictor X that were 310 

fitted in linear regression models for sample sizes N = 10, 25, 50, 100, 250, 500, 1000. Figure names 311 

are constructed as “X” <Distribution name of X> “_Y” <How many distributions of Y> 312 

“Distributions_N” <Sample size> “_Sim” <Number of simulation runs>, such that the file 313 

“XD0_Y10Distributions_N10_Sim50000” shows results from all 50,000 simulation runs where the 314 

predictor X was normally distributed, the independent variable Y had ten different distributions (D0–315 

D9) and the sample size was N = 10. In each of the 7 × 10 = 70 figures, the leftmost column depicts 316 

the distribution of Y, the second column depicts the distribution of X, the third column a QQ-plot of 317 

the residuals and the forth column a QQ-plot of the -log10(P-values). Residuals were distributed as the 318 

dependent variable Y because the regression coefficient b was on average zero. 319 

 320 

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.321 
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 322 

 323 

Figure S2 | Summary of linear model diagnostics for all 10 × 10 = 100 combinations of the dependent 324 

variable Y and the predictor X depicted in (A). The numbers D0–D9 refer to the plots in in (B–E) 325 

where on the Y-axis the distribution of the dependent variable and on the X-axis of the predictor is 326 

indicated. (B) Type I error rate at an α-level of 0.05 for sample sizes of N = 10, 100 and 1000. Red 327 

colours represent increased and blue conservative type I error rates. (C) Mean proportion of 328 

studentized residuals (R) exceeding the critical value of R > 2 as a measure of discrepancy. A large 329 

discrepancy value represents an observation whose dependent variable Y is unusual given its value of 330 

the predictor X. It is thus influenced predominately by the distribution of Y. (D) Mean proportion of 331 

hat values (H) exceeding the critical value of H > (2 × (k + 1)) / n as a measure of leverage. k is the 332 

number of regression slopes and n is the number of observations. A large leverage value represents an 333 

observation whose predictor X is unusual given its value of the independent variable Y. It is thus 334 

influenced predominately by the distribution of X. (E) Mean proportion of Cook’s distance (D) 335 

exceeding the critical value of D > 4 / (n - k - 1) as a measure of influence. Influence represents the 336 

product of discrepancy and leverage (Zuur, Ieno & Smith 2007; Ramsey & Schafer 2013).337 
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Figure S3 | All simulated combinations of the dependent variable Y and the last of four predictors X 338 

that were fitted in linear regression models. The first three predictors were normally distributed and 339 

the distribution of the last one was varied. The sample size was N = 100. For a description of file 340 

names and content see Figure S1. 341 

 342 

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.343 
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Figure S4 | All simulated combinations of the dependent variable Y and the predictor X fitted in linear 344 

random-intercept models. We simulated N = 100 independent samples each of which was sampled 345 

twice, such that the single random effect explained roughly 30% of the variation in Y. For a 346 

description of file names and content see Figure S1. 347 

 348 

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.349 
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 350 

 351 

Figure S5 | Power, bias and precision of parameter estimates from Gaussian linear regression models 352 

for all 10 × 10 = 100 combinations of the dependent variable Y and the predictor X at a regression 353 

coefficient b = 0.15. (A) Overview of the different distributions that we simulated, which were the 354 

same as in Figure 1. The numbers D0–D9 refer to the plots in (B–E) where on the Y-axis the 355 

distribution of the dependent variable and on the X-axis of the predictor is indicated. (B) Power for 356 

sample sizes of N = 10, 100 and 1000. Red colours represent increased power. (C) Deviation of power 357 

from the expected value derived from a normally distributed Y and X for sample sizes of N = 10, 100 358 

and 1000. Red colours represent increased and blue colours decreased power. (D) Bias and (E) 359 

precision of the regression coefficient estimates for sample sizes of N = 10, 100 and 1000.360 
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 361 

 362 

Figure S6 | Power, bias and precision of parameter estimates from Gaussian linear regression models 363 

for all 10 × 10 = 100 combinations of the dependent variable Y and the predictor X at a regression 364 

coefficient b = 0.25. (A) Overview of the different distributions that we simulated, which were the 365 

same as in Figure 1. The numbers D0–D9 refer to the plots in (B–E) where on the Y-axis the 366 

distribution of the dependent variable and on the X-axis of the predictor is indicated. (B) Power for 367 

sample sizes of N = 10, 100 and 1000. Red colours represent increased power. (C) Deviation of power 368 

from the expected value derived from a normally distributed Y and X for sample sizes of N = 10, 100 369 

and 1000. Red colours represent increased and blue colours decreased power. (D) Bias and (E) 370 

precision of the regression coefficient estimates for sample sizes of N = 10, 100 and 1000.371 
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Figure S7 | All simulated combinations of the dependent variable Y and the predictor X fitted in 372 

generalized linear models with a Poisson error structure. The sample size was N = 100. For a 373 

description of file names and content see Figure S1. 374 

 375 

Provided as supplementary figures (.jpg) on the Open Science Framework homepage.376 
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Supplementary Tables 377 

 378 

Table S1 | Observed and expected power of a regression model in which both the dependent variable 379 

Y and the predictor X are normally distributed with mean 0 and standard deviation 1. The expected 380 

power was calculated using the power.SLR() function from the powerMediation R package (v0.2.9, 381 

Dupont & Plummer 1998; Qiu 2018). The observed power was estimated using 50,000 simulations. 382 

  383 

Sample 
size 

Mean of 
slope b 

Expected power at 
α = 0.05 

Expected power at 
α = 0.001 

Observed power at 
α = 0.05 

Observed power at 
α = 0.001 

10 0.15 0.064 1.20 × 10-3 0.069 1.48 × 10-3 

10 0.20 0.077 1.38 × 10-3 0.084 2.26 × 10-3 

10 0.25 0.094 1.64 × 10-3 0.106 3.44 × 10-3 

100 0.15 0.321 0.032 0.316 0.034 

100 0.20 0.523 0.090 0.517 0.095 

100 0.25 0.724 0.210 0.714 0.218 

1000 0.15 0.998 0.933 0.998 0.932 

1000 0.20 1.000 0.999 1.000 0.999 

1000 0.25 1.000 1.000 1.000 1.000 
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Table S2 | Distributions and effect sizes used for assessing the interpretability and power of Gaussian 384 

versus binomial and Poisson models at a sample size of N = 100 in 50,000 simulation runs. Each 385 

combination of the dependent variable Y and predictor X was fitted in a glm using a Gaussian error 386 

structure and the appropriate error structure according to the distribution of Y. The effect sizes were 387 

chosen such that we reached a power of around 0.5. 388 

 389 

Sampling 
distribution Y 

Sampling 
distribution X 

Mean Y 
 

Variance Y 
 

Mean X 
 

Variance X 
 

Effect 
 

Back-transformed 
effect# 

Poisson Gaussian 1 1 0 1 0.2 1.22 

Poisson Gamma 1 1 10 100 2.2 9.03 

Poisson Binomial 1 1 0.75 0.19 0.1 1.11 

Binomial Gaussian 0.75 0.19 0 1 0.45 0.61 

Binomial Gamma 0.75 0.19 10 100 4.2 0.99 

Binomial Binomial 0.75 0.19 0.75 0.19 0.2 0.55 

# Back-transformation was done by using the functions plogis() for binomial models and exp() for Poisson models.390 
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Table S3 | Summary of type I error rates (α), scale shift parameters (υ), mean observed P-values at an expected value of 10-3 and 10-4 and the resulting bias 391 

from 50,000 simulation runs across all 10 × 10 = 100 combinations of the dependent variable Y and the predictor X. 392 

 393 

Sample size Mean α (range) Mean υ (range) Mean P at 10-3 (range) Mean P at 10-4 (range) Bias at -log10P=3 Bias at -log10P=4 

10 0.048 (0.015–0.110) 2.437 (0.696–51.350) 7.72 × 10-12 (2.59 × 10-125–7.00 × 10-3) 7.96 × 10-21 (6.31 × 10-129–1.05 × 10-3) 3.704 (0.718–41.529) 5.025 (0.744–32.050) 

25 0.048 (0.019–0.073) 1.065 (0.771–2.461) 1.96 × 10-4 (2.20 × 10-16–7.93 × 10-3) 3.25 × 10-6 (6.81 × 10-27–1.57 × 10-3) 1.236 (0.700–5.219) 1.372 (0.701–6.542) 

50 0.048 (0.028–0.067) 1.043 (0.837–2.229) 3.64 × 10-4 (5.36 × 10-13–6.47 × 10-3) 5.94 × 10-6 (3.55 × 10-23–1.27 × 10-3) 1.146 (0.730–4.090) 1.307 (0.724–5.612) 

100 0.049 (0.037–0.058) 1.026 (0.892–1.937) 5.04 × 10-4 (8.22 × 10-11–4.55 × 10-3) 1.76 × 10-5 (7.14 × 10-19–1.45 × 10-3) 1.099 (0.781–3.362) 1.188 (0.710–4.537) 

250 0.049 (0.041–0.053) 1.020 (0.941–1.631) 5.81 × 10-4 (2.49 × 10-9–3.00 × 10-3) 2.16 × 10-5 (2.14 × 10-15–3.31 × 10-4) 1.079 (0.841–2.868) 1.166 (0.870–3.667) 

500 0.049 (0.045–0.052) 1.014 (0.958–1.534) 6.57 × 10-4 (9.12 × 10-9–2.02 × 10-3) 3.12 × 10-5 (1.87 × 10-16–7.07 × 10-4) 1.061 (0.898–2.680) 1.126 (0.788–3.932) 

1000 0.049 (0.044–0.052) 1.010 (0.977–1.343) 7.51 × 10-4 (6.35 × 10-7–1.52 × 10-3) 3.94 × 10-5 (1.29 × 10-14–2.52 × 10-4) 1.042 (0.939–2.066) 1.101 (0.899–3.473) 
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Table S4 | Summary of type I error rates (α), scale shift parameters (υ), mean observed P-values at an expected value of 10-3 and 10-4 and the resulting bias 394 

from 50,000 simulation runs across all 10 × 2 = 20 combinations where either the dependent variable Y or the predictor X was normally distributed. 395 

 396 

Normally 
distributed variable 

Sample 
size 

Mean α (range) 
 

Mean υ (range) 
 

Mean P at 10-3 (range) 
 

Mean P at 10-4 (range) 
 

Bias at -log10P=3 
 

Bias at -log10P=4 
 

Y 10 0.050 (0.048–0.052) 1.005 (0.997–1.015) 8.82 × 10-4 (6.64 × 10-4–1.03 × 10-3) 8.43 × 10-5 (4.01 × 10-5–1.55 × 10-4) 1.018 (0.996–1.059) 1.019 (0.952–1.099) 

Y 25 0.050 (0.049–0.052) 1.004 (0.990–1.015) 9.90 × 10-4 (7.92 × 10-4–1.22 × 10-3) 6.25 × 10-5 (3.19 × 10-5–1.17 × 10-4) 1.002 (0.971–1.034) 1.051 (0.983–1.124) 

Y 50 0.050 (0.049–0.051) 0.999 (0.992–1.015) 1.02 × 10-3 (8.06 × 10-4–1.32 × 10-3) 9.14 × 10-5 (4.79 × 10-5–1.55 × 10-4) 0.997 (0.960–1.031) 1.010 (0.952–1.080) 

Y 100 0.050 (0.048–0.051) 1.000 (0.993–1.005) 1.02 × 10-3 (8.90 × 10-4–1.25 × 10-3) 8.22 × 10-5 (5.90 × 10-5–1.32 × 10-4) 0.998 (0.968–1.017) 1.021 (0.970–1.057) 

Y 250 0.050 (0.048–0.051) 1.001 (0.990–1.014) 9.66 × 10-4 (7.49 × 10-4–1.22 × 10-3) 8.29 × 10-5 (3.77 × 10-5–1.61 × 10-4) 1.005 (0.972–1.042) 1.020 (0.949–1.106) 

Y 500 0.049 (0.047–0.051) 0.998 (0.984–1.003) 9.95 × 10-4 (7.62 × 10-4–1.28 × 10-3) 8.39 × 10-5 (4.20 × 10-5–1.79 × 10-4) 1.001 (0.965–1.039) 1.019 (0.937–1.094) 

Y 1000 0.050 (0.049–0.052) 0.999 (0.989–1.017) 1.06 × 10-3 (8.99 × 10-4–1.36 × 10-3) 8.47 × 10-5 (5.86 × 10-5–1.44 × 10-4) 0.992 (0.956–1.015) 1.018 (0.960–1.058) 

X 10 0.050 (0.048–0.052) 1.003 (0.996–1.014) 9.28 × 10-4 (7.59 × 10-4–1.24 × 10-3) 9.76 × 10-5 (5.62 × 10-5–1.46 × 10-4) 1.011 (0.968–1.040) 1.003 (0.959–1.063) 

X 25 0.050 (0.049–0.051) 0.999 (0.988–1.010) 1.11 × 10-3 (8.45 × 10-4–1.42 × 10-3) 9.73 × 10-5 (5.31 × 10-5–1.69 × 10-4) 0.986 (0.949–1.024) 1.003 (0.943–1.069) 

X 50 0.049 (0.048–0.052) 0.998 (0.988–1.017) 1.01 × 10-3 (7.53 × 10-4–1.27 × 10-3) 1.35 × 10-4 (7.49 × 10-5–2.03 × 10-4) 0.998 (0.965–1.041) 0.968 (0.923–1.031) 

X 100 0.050 (0.048–0.051) 1.001 (0.996–1.005) 9.98 × 10-4 (8.04 × 10-4–1.20 × 10-3) 7.64 × 10-5 (2.39 × 10-5–1.81 × 10-4) 1.000 (0.973–1.032) 1.029 (0.936–1.155) 

X 250 0.050 (0.049–0.052) 1.004 (0.995–1.016) 9.69 × 10-4 (7.49 × 10-4–1.25 × 10-3) 6.74 × 10-5 (2.72 × 10-5–1.46 × 10-4) 1.005 (0.968–1.042) 1.043 (0.959–1.141) 

X 500 0.050 (0.049–0.052) 1.000 (0.989–1.014) 9.67 × 10-4 (7.99 × 10-4–1.16 × 10-3) 1.15 × 10-4 (5.19 × 10-5–1.84 × 10-4) 1.005 (0.979–1.033) 0.985 (0.934–1.071) 

X 1000 0.050 (0.049–0.052) 1.000 (0.992–1.012) 1.02 × 10-3 (7.48 × 10-4–1.30 × 10-3) 6.92 × 10-5 (1.91 × 10-5–1.38 × 10-4) 0.997 (0.962–1.042) 1.040 (0.965–1.180) 
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Table S5 | Summary of the heteroscedasticity simulations. We estimated type I error rates (α) in glms 397 

with a Gaussian or Quasipoisson error structure and the mean observed difference in variances 398 

between the two groups as defined by the predictor variable with two levels (see Supplementary 399 

Methods for details, expected value is 10). 400 

 401 

Model 
 

Sampling 
distribution Y 

P(X1=1) 
 

Sample size 
 

Gaussian α 
 

Quasipoisson α 
 

Observed difference 
in variances 

Y ~ X1 D0 0.2 100 1.18 × 10-3 - 11.21 

Y ~ X1 D0 0.3 100 7.70 × 10-3 - 10.75 

Y ~ X1 D0 0.4 100 0.024 - 10.53 

Y ~ X1 D0 0.5 100 0.054 - 10.41 

Y ~ X1 D0 0.6 100 0.101 - 10.35 

Y ~ X1 D0 0.7 100 0.168 - 10.31 

Y ~ X1 D0 0.8 100 0.262 - 10.24 

Y ~ X1 D7 0.2 100 0.037 0.024 14.46 

Y ~ X1 D7 0.3 100 0.063 0.047 12.78 

Y ~ X1 D7 0.4 100 0.096 0.080 11.97 

Y ~ X1 D7 0.5 100 0.130 0.121 11.73 

Y ~ X1 D7 0.6 100 0.176 0.180 11.37 

Y ~ X1 D7 0.7 100 0.237 0.256 11.17 

Y ~ X1 D7 0.8 100 0.319 0.356 10.95 

Y ~ X1 D7.1 0.2 100 0.110 0.079 19.21 

Y ~ X1 D7.1 0.3 100 0.145 0.119 15.86 

Y ~ X1 D7.1 0.4 100 0.177 0.158 14.39 

Y ~ X1 D7.1 0.5 100 0.201 0.199 13.66 

Y ~ X1 D7.1 0.6 100 0.219 0.244 13.12 

Y ~ X1 D7.1 0.7 100 0.207 0.283 13.42 

Y ~ X1 D7.1 0.8 100 0.154 0.298 15.00 

Y ~ X1 D0 0.2 1000 5.4 × 10-4 - 10.10 

Y ~ X1 D0 0.3 1000 6.68 × 10-3 - 10.07 

Y ~ X1 D0 0.4 1000 0.022 - 10.05 

Y ~ X1 D0 0.5 1000 0.050 - 10.04 

Y ~ X1 D0 0.6 1000 0.097 - 10.03 

Y ~ X1 D0 0.7 1000 0.166 - 10.03 

Y ~ X1 D0 0.8 1000 0.250 - 10.02 

Y ~ X1 D7 0.2 1000 4.34 × 10-3 2.80 × 10-3 10.39 

Y ~ X1 D7 0.3 1000 0.015 0.012 10.25 

Y ~ X1 D7 0.4 1000 0.031 0.028 10.20 

Y ~ X1 D7 0.5 1000 0.062 0.059 10.15 
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Y ~ X1 D7 0.6 1000 0.109 0.108 10.13 

Y ~ X1 D7 0.7 1000 0.174 0.176 10.09 

Y ~ X1 D7 0.8 1000 0.265 0.270 10.11 

Y ~ X1 D7.1 0.2 1000 0.015 8.56 × 10-3 10.74 

Y ~ X1 D7.1 0.3 1000 0.030 0.021 10.49 

Y ~ X1 D7.1 0.4 1000 0.056 0.046 10.38 

Y ~ X1 D7.1 0.5 1000 0.089 0.081 10.24 

Y ~ X1 D7.1 0.6 1000 0.132 0.131 10.19 

Y ~ X1 D7.1 0.7 1000 0.197 0.203 10.17 

Y ~ X1 D7.1 0.8 1000 0.288 0.299 10.21 

Y ~ X1 * X2 D0 0.2 100 1.2 × 10-4 - 11.23 

Y ~ X1 * X2 D0 0.3 100 2.42 × 10-3 - 10.76 

Y ~ X1 * X2 D0 0.4 100 0.017 - 10.58 

Y ~ X1 * X2 D0 0.5 100 0.064 - 10.47 

Y ~ X1 * X2 D0 0.6 100 0.169 - 10.34 

Y ~ X1 * X2 D0 0.7 100 0.340 - 10.29 

Y ~ X1 * X2 D0 0.8 100 0.559 - 10.27 

Y ~ X1 * X2 D7 0.2 100 4.26 × 10-3 9.20 × 10-3 14.52 

Y ~ X1 * X2 D7 0.3 100 7.40 × 10-3 0.036 12.83 

Y ~ X1 * X2 D7 0.4 100 0.019 0.097 12.09 

Y ~ X1 * X2 D7 0.5 100 0.047 0.206 11.58 

Y ~ X1 * X2 D7 0.6 100 0.108 0.353 11.26 

Y ~ X1 * X2 D7 0.7 100 0.209 0.492 11.07 

Y ~ X1 * X2 D7 0.8 100 0.321 0.557 11.09 

Y ~ X1 * X2 D7.1 0.2 100 0.049 0.084 20.10 

Y ~ X1 * X2 D7.1 0.3 100 0.042 0.147 15.97 

Y ~ X1 * X2 D7.1 0.4 100 0.036 0.217 14.06 

Y ~ X1 * X2 D7.1 0.5 100 0.044 0.293 13.57 

Y ~ X1 * X2 D7.1 0.6 100 0.080 0.357 13.20 

Y ~ X1 * X2 D7.1 0.7 100 0.150 0.381 13.50 

Y ~ X1 * X2 D7.1 0.8 100 0.251 0.368 15.17 

Y ~ X1 * X2 D0 0.2 1000 2 × 10-5 - 10.11 

Y ~ X1 * X2 D0 0.3 1000 1.00 × 10-3 - 10.07 

Y ~ X1 * X2 D0 0.4 1000 0.011 - 10.05 

Y ~ X1 * X2 D0 0.5 1000 0.051 - 10.04 

Y ~ X1 * X2 D0 0.6 1000 0.146 - 10.03 

Y ~ X1 * X2 D0 0.7 1000 0.306 - 10.02 

Y ~ X1 * X2 D0 0.8 1000 0.526 - 10.04 
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Y ~ X1 * X2 D7 0.2 1000 4 × 10-5 1.4 × 10-4 10.42 

Y ~ X1 * X2 D7 0.3 1000 1.24 × 10-3 3.24 × 10-3 10.25 

Y ~ X1 * X2 D7 0.4 1000 9.82 × 10-3 0.020 10.21 

Y ~ X1 * X2 D7 0.5 1000 0.046 0.077 10.16 

Y ~ X1 * X2 D7 0.6 1000 0.136 0.195 10.13 

Y ~ X1 * X2 D7 0.7 1000 0.297 0.379 10.09 

Y ~ X1 * X2 D7 0.8 1000 0.509 0.596 10.06 

Y ~ X1 * X2 D7.1 0.2 1000 1.4 × 10-4 1.12 × 10-3 10.71 

Y ~ X1 * X2 D7.1 0.3 1000 1.26 × 10-3 0.010 10.49 

Y ~ X1 * X2 D7.1 0.4 1000 8.78 × 10-3 0.046 10.34 

Y ~ X1 * X2 D7.1 0.5 1000 0.037 0.128 10.34 

Y ~ X1 * X2 D7.1 0.6 1000 0.115 0.278 10.24 

Y ~ X1 * X2 D7.1 0.7 1000 0.259 0.482 10.25 

Y ~ X1 * X2 D7.1 0.8 1000 0.449 0.684 10.19 
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